

TF952

MagnetoResistive Magnetic Field Sensor

The TF952 is a magnetic field sensor based on the Tunnel MagnetoResistive (TMR) effect. The sensor contains two Wheatstone bridges. This allows the simultaneous measurement of two magnetic field directions (X and Y). The sensor is ideal for measuring magnetic fields in a linear range from -20 mT up to 20 mT.

A typical application is endpoint detection of pneumatic or hydraulic cylinders. The X and Y bridge configuration allows the optional application as a simple angle sensor.

The TF952 is available as flip-chip for SMD assembly.

Product Overview of TF952

Article description	Package	Delivery Type
TF952APA-AE	Flip-Chip	Tape on reel (5000 pcs)
TF952 Evalboard	Evalboard	ESD-Box

Quick Reference Guide

Symbol	Parameter	min.	typ.	max.	Unit
V _{CC}	Supply voltage	-	±3.3	±5.5	V
B _{Lin}	Linear magnetic range	-20.0	-	+20.0	mT
S _{Linmax}	Sensitivity (in linear range)	6.0	9.0	12.0	mV/V/mT
R _s	Sensor resistance	20.0	50.0	80.0	kΩ
R _B	Bridge resistance	40.0	100.0	160.0	kΩ

Absolute Maximum Ratings

In accordance with the absolute maximum rating system (IEC60134).

Symbol	Parameter	Min.	Max.	Unit
V _{CC}	Supply voltage	-5.5	+5.5	V
T _{amb}	Ambient temperature	-40	+125	°C
ESD HBM	ESD tolerance according to HBM	-	200	V

Stresses beyond those listed under "Absolute maximum ratings" may cause permanent damage to the device.

This is a stress rating only and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Features

- Based on the TunnelMagneto-Resistive (TMR) effect
- Flip-Chip assembly
- For two magnetic field directions
- Ambient temperature range from -40 °C to +125 °C

Advantages

- Large working distance
- High sensitivity
- Large measurement range
- Low hysteresis

Applications

- Endpoint detection in cylinders
- Reference monitoring
- Magnetic switches

Magnetic Data

Symbol	Parameter	Conditions	min.	typ.	max.	Unit
B _{lin}	Linear magnetic flux density range (abs) 1)		-20.0	-	+20.0	mT
B _{sat}	Saturation magnetic flux density ²⁾		-	±30.0	-	mT

¹⁾ By exceeding the value of B_{lin} the output signal is no longer unique and goes into saturation. After the event of a high field exposure (>20mT), the sensor must be "reset" by a low (<5mT) of zero magnetic field.

Electrical Data

T_{amb} = +25°C; unless otherwise specified.

Symbol	Parameter	Conditions	min.	typ.	max.	Unit
V _{CC}	Supply voltage		-	±3.3	±5.5	V
V _{off}	Offset voltage per V _{CC} 3) 5)		-3.0	-	+3.0	mV/V
TC_{Voff}	Temperature coefficient of V _{off} 4) 5)		-5.0	-	+5.0	(μV/V)/K
R _B	Bridge resistance		40.0	100.0	160.0	kΩ
Rs	Sensor resistance		20.0	50.0	80.0	kΩ
TC _{RB}	Temperature coefficient of R _B 6)		-0.08	-0.1	-0.12	%/K
S _{Linmax}	Sensitivity (in linear max. range)		6.0	9.0	12.0	mV/V/mT
S _{Lin5}	Sensitivity (M=±5mT)		7.0	-	-	mV/V/mT
TC _{RB}	Temperature coefficient of S 7)		-0.13	-0.16	-0.19	%/K
FIT	FIT-Rate	At 55 °C	-	3.3	-	x109 h
MTTF	Mean time to failure	At 55 °C	-	376712	-	years

 $^{^{3)}}$ In the field range of 20 mT is exceeded, an additional offset of up to ± 3 mV/V may occur.

4)
$$TC_{Voff=100} \frac{V_{off(T2)}V_{off(T1)}}{T_2-T_1}$$
 with $T_1 = +25^{\circ}C; T_2 = +125^{\circ}C,$ typ. Value: $\pm 1~\mu V/V/K$.

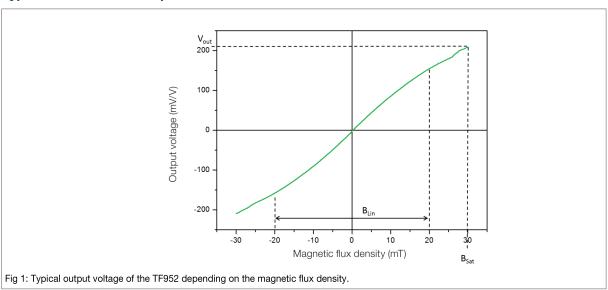
$$^{6)} \quad TC_{AB} = 100 \cdot \quad \frac{V_{B(T2)^{*}}V_{B(T1)}}{V_{B(T1)}(T_{2} - T_{1})} - with \ T_{1} = +25^{\circ}C; \ T_{2} = +125^{\circ}C.$$

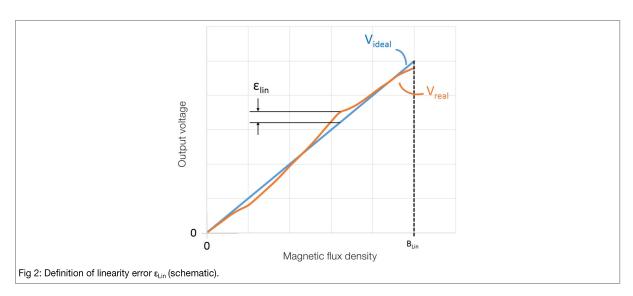
$$^{7)} \ TC_{s} = 100 \cdot \frac{S_{72} - S_{71}}{S_{71} \cdot (T_2 - T_1)} \ with \ T_1 = +25^{\circ}C; \ T_2 = +125^{\circ}C.$$

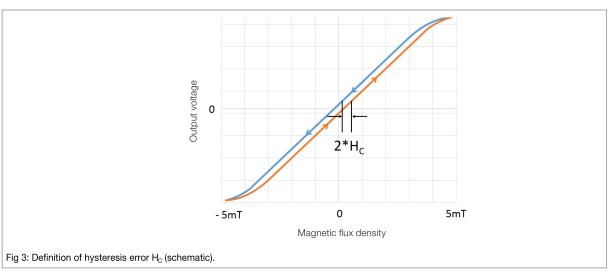
Accuracy

 $T_{amb} = +25$ °C; unless otherwise specified.

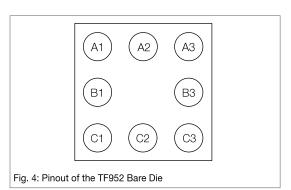
Symbol	Parameter	Conditions	min.	typ.	max.	Unit
ε _{Lin5}	Linearity error (B=±5mT)	See Fig. 2	-	2.0	-	% of V _{Out}
H _{C5}	Hysteresis error 8)	H_{C} is valid for ±5 mT field range. See Fig. 3.	-	-	0.05	mT
ε _{Linmax}	Linearity error (in max. linear range)	See Fig. 2	-	2.0	-	% of V _{Out}
H _{Cmax}	Hysteresis error 8)	H _{Cmax} marks the maximum hysteresis occurring by applying fields >±20 mT. Value is determined as H _C in the range of ±5 mT. See Fig. 3.	-	-	0.05	mT

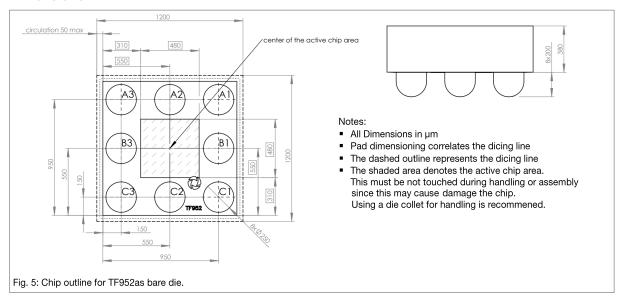

 $^{^{8)}\}mbox{H}_{\mbox{\scriptsize C}}$ is defined as half of the maximum difference between up and down of the signal trace.


 $^{^{\}rm 2)}$ At $B_{\rm sat}$ the sensor delivers the maximal output voltage of minimum 100 mV/V.


⁵⁾ Determined in signal saturation.

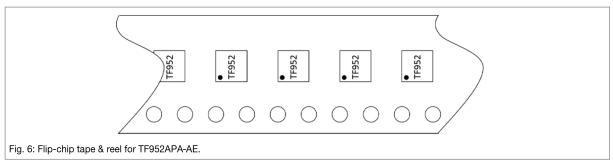
Typical Performance Graphs




TF952 Bare Die

Pinout

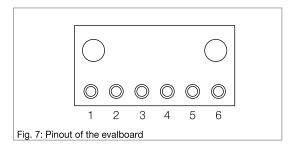
Pad	Symbol	Parameter
A1	V _{CCY}	Power supply Y
A2	-V _{OY}	Negativee output voltage Y
A3	-V _{OX}	Negativee output voltage X
B1	NC	Not connected
B3	V _{CCX}	Power supply X
C1	+V _{OY}	Positive output voltage Y
C2	GND	Ground
C3	+V _{OX}	Positive output voltage X

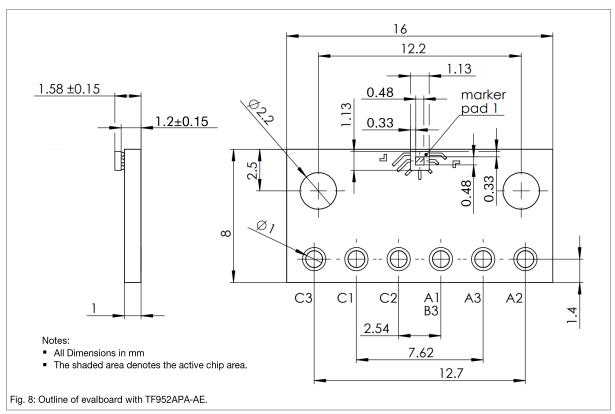

Dimensions

Data for Packaging and Interconnection Technologies

Parameter	Conditions	Value	Unit
Solder ball material		SnAG2.6Cu0.6	
Maximum solder temperature	6s	260	°C

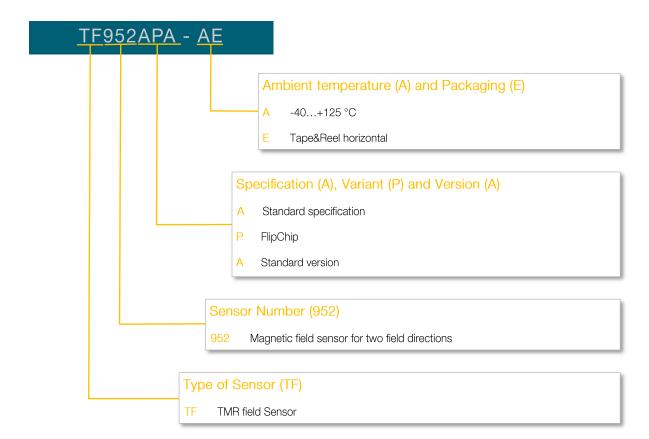
Reel layout




Evalboard with TF952APA-AE

Pinout

Pad	Symbol	Parameter
1	+V _{O1}	Positive output voltage bridge 1
2	+V _{O2}	Positive output voltage bridge 2
3	GND	Ground
4	V _{CC}	Supply voltage
5	-V _{O1}	Negative output voltage bridge 1
6	-V _{O2}	Negative output voltage bridge 2



Dimensions

Additional Information on Ordering Code

General Information

Product Status

Article	Status
TF952APA-AE	The product is in series production.
TF952 Evalboard	This product is for evaluation of the TF952APA-AE sensor.
Note	The status of the product may have changed since this data sheet was published. The latest information is available on the internet at www.sensitec.com.

Disclaimer

Sensitec GmbH reserves the right to make changes, without notice, in the products, including software, described or contained herein in order to improve design and/or performance. Information in this document is believed to be accurate and reliable. However, Sensitec GmbH does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information. Sensitec GmbH takes no responsibility for the content in this document if provided by an information source outside of Sensitec products. In no event shall Sensitec GmbH be liable for any indirect, incidental, punitive, special or consequential damages (including but not limited to lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) irrespective the legal base the claims are based on, including but not limited to tort (including negligence), warranty, breach of contract, equity or any other legal theory. Notwithstanding any damages that customer might incur for any reason whatsoever, Sensitec product aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the General Terms and Conditions of Sale of Sensitec GmbH. Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights. Unless otherwise agreed upon in an individual agreement Sensitec products sold are subject to the General Terms and Conditions of Sales as published at www.sensitec.com. The use and/or application of our products in a military end use is explicitly prohibited. In the event of infringements, we reserve the right to take legal action, including but not limited to the assertion of claims for damages and/or the immediate termination of the business relationship.

General Information

Application Information

Applications that are described herein for any of these products are for illustrative purposes only. Sensitec GmbH makes no representation or warranty - whether expressed or implied - that such applications will be suitable for the specified use without further testing or modification. Customers are responsible for the design and operation of their applications and products using Sensitec products, and Sensitec GmbH acliability for any assistance with applications or customer design. It is customer's sole responsibility to determine whether the Sensitec product is suitable and fit for the customer's applications and products planned, as well as for the planned application and use of customer's party customer(s). Customers should provide appropriate design and safeguards to minimize the risks associated with their applications and products. Sensitec GmbH does not accept any liability related to any default, damage, costs or problem which is based on any weakness or default in the customer's applications or products, or the application or use by customer's third party customer(s). Customer is responsible for doing all necessary testing for the customer's applications and products using Sensitec products in order to avoid a default of the applications and the products or of the application or use by customer's third party customer(s). Sensitec does not accept any liability in this respect.

Life Critical Applications

These products are not qualified for use in life support appliances, aeronautical applications or devices or systems where malfunction of these products can reasonably be expected to result in personal injury.

Copyright © by Sensitec GmbH, Germany

All rights reserved. No part of this document may be copied or reproduced in any form or by any means without the prior written agreement of the copyright owner. The information in this document is subject to change without notice. Please observe that typical values cannot be guaranteed. Sensitec GmbH does not assume any liability for any consequence of its use.

Changelist

Version	Description of the Change	Date
TF952.DSE.09	Add evalboard information (p. 5)	12/2024
TF952.DSE.08	Change Footer and Product Status (pp. 1-6)	02/2023
TF952.DSE.07	Disclaimer supplement	06/2022
TF952.DSE.06	Change of technical data (pp. 1-6)	05/2022
TF952.DSE.00	Original (pp. 1-6)	01/2018

Sensitec GmbH

Schanzenfeldstr. 2 • 35578 Wetzlar • Germany Tel +49 (0) 6441 5291-0 • Fax +49 (0) 6441 5291-117 sensitec@sensitec.com • www.sensitec.com