

AA745Cxx-LB

MagnetoResistive Angle Sensor

The AA745 is an angular sensor based on the Anisotropic MagnetoResistive (AMR) effect. The sensor contains two Wheatstone bridges with common ground and supply pin $V_{\rm cc}$. They are shifted at a relative angle of 45° to one another.

A rotating magnetic field in the sensor plane delivers two sinusoidal output signals with the double frequency of the angle α between sensor and magnetic field direction shown in Fig. 1. The function of these signals is $+\sin(2\alpha)$ and $+\cos(2\alpha)$.

Product Overview

Product Description	Package	Delivery Type
AA745CCC-LB	Diced single die wafer	Foil
AA745CCD-LB	Diced	Foil

Quick Reference Guide

Symbol	Parameter	Min.	Тур.	Max.	Unit			
V _{cc}	Supply voltage	-	5.0	9.0	V			
S	Sensitivity $(\alpha_1 = 0^\circ; \alpha_2 = 135^\circ)$	2.10	2.35	2.60	mV/deg			
$V_{\rm off}$	Offset voltage per V _{cc}	-2.0	-	+2.0	mV/V			
V _{peak}	Signal amplitude per V _{cc}	12.0	13.0	14.0	mV/V			
R _s	Sensor resistance	1.35	1.60	1.85	kΩ			

Absolute Maximum Ratings

In accordance with the absolute maximum rating system (IEC60134).

Symbol	Parameter	Min.	Max.	Unit
V _{CC}	Supply voltage	-9.0	+9.0	V
T _{amb}	Ambient temperature	-40	+150	°C
T _{stg}	Storage temperature	-65	+150	°C

Stresses beyond those listed under "Absolute maximum ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Features

- Based on the AnisotropicMagnetoResistive (AMR) effect
- Contains two Wheatstone bridges
- Sine and cosine output
- Temperature range from -40 °C to +150 °C
- Bond pads on one side

Advantages

- Non-contacting angle measurement
- Large air gap
- Saturation field distance < 300 µm
- Excellent accuracy
- Position tolerant
- Insensitive to interference field
- Minimal offset voltage
- Negligible hysteresis

Applications

- Incremental or absolute position measurement (linear and rotary motion)
- Motor commutation
- Rotational speed measurement
- Angle measurement (180° absolute on shaft end)

Magnetical Data

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
H _{ext}	Magnetic field strength 1)		-	25	-	kA/m
d _{sat}	Saturation field distance		-	300	-	μm

¹⁾ The stimulating magnetic field in the sensor plane necessary to ensure the minimum error as specified in note 9.

Electrical Data

 $T_{amb} = 25 \text{ °C}$; $H_{ext} = 25 \text{ kA/m}$; $V_{CC} = 5 \text{ V}$; unless otherwise specified.

amb	amb = 0, fext = 0, man, fcc o 1, man of the open of th						
Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit	
V _{cc}	Supply voltage		-	5.0	9.0	V	
S	Sensitivity 2)	$\alpha_{1} = 0^{\circ}; \ \alpha_{2} = 135^{\circ}$	2.1	2.35	2.6	mV/deg	
TC _s	Temperature coefficient of sensitivity 3)		-0.31	-0.33	-0.35	%/K	
$V_{\rm off}$	Offset voltage per V _{cc}	See Fig. 1	-2.0	-	+2.0	mV/V	
TC _{Voff}	Temperature coefficient of V _{off} 4)		-1.0	-	+1.0	(μV/V)/K	
V _{peak}	Signal amplitude per V _{CC} 5)	See Fig. 1	12.0	13.0	14.0	mV/V	
TC _{Vpeak}	Temperature coefficient of V _{peak} 6)		-0.31	-0.33	-0.35	%/K	
V _{peak,min}	Signal amplitude per V _{CC} 5) at 150°C		6.0	-	-	mV/V	
R _s	Bridge resistance 7)		1.35	1.60	1.85	kΩ	
TC _{RB}	Temperature coefficient of R _B ⁸⁾		0.38	0.42	0.46	%/K	
	I .						

 $^{\,^{2)}\,\,}$ Sensitivity changes with angle due to sinusoidal output.

³⁾
$$TC_S = 100 \cdot \frac{S_{(T2)} - S_{(T1)}}{S_{(T1)} \cdot (T_2 - T_1)}$$
 with $T_1 = -40 \text{ °C}$; $T_2 = +150 \text{ °C}$.

$$^{4)} \quad TC_{Voff} = 100 \cdot \frac{V_{off(T2)} - V_{off(T1)}}{T_2 - T_1} \quad with \ T_1 = -40 \ ^{\circ}C; \ T_2 = +150 \ ^{\circ}C.$$

 $^{5)}$ Maximal output voltage without offset influences. Periodicity of V $_{\scriptscriptstyle Deak}$ is $sin(2\alpha)$ and $cos(2\alpha)$.

$$^{6)} \quad TC_{Vpeak} = 100 \cdot \frac{V_{peak(T2)} - V_{peak(T1)}}{V_{peak(T1)} \cdot (T_2 - T_1)} \quad with \ T_1 = -40 \ ^{\circ}C; \ T_2 = +150 \ ^{\circ}C.$$

 $^{7)}\,\,$ Sensor resistance between pads 6 and 3, 4 and 2, and 5 and 1.

Accuracy

 $T_{amb} = 25$ °C; $H_{ext} = 25$ kA/m; $V_{CC} = 5$ V; unless otherwise specified.

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
Δα	Angular error 9)	H _{ext} ≥ 40 kA/m	0	0.05	0.10	deg
k	Amplitude synchronism 10)		-0.5	0	+0.5	% of V_{peak}

 $^{^{9)}}$ $\Delta x = |xreal - xmeasured|$ without offset influences due to deviations from ideal sinusoidal characteristics.

10)
$$k = 100 - 100 \cdot \frac{V_{peak1}}{V_{peak2}}$$

Dynamical Data

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
ω	Angular velocity of the magnetic field		0	-	1	MHz

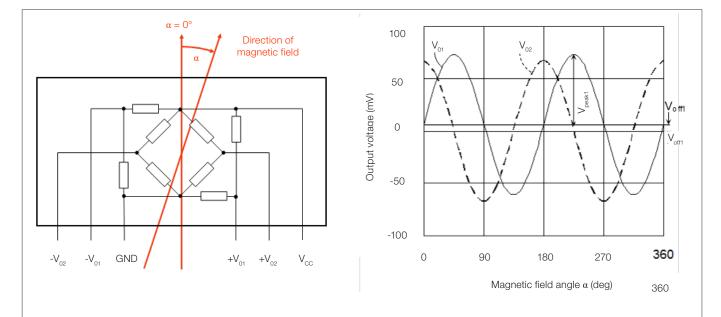
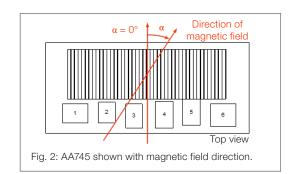
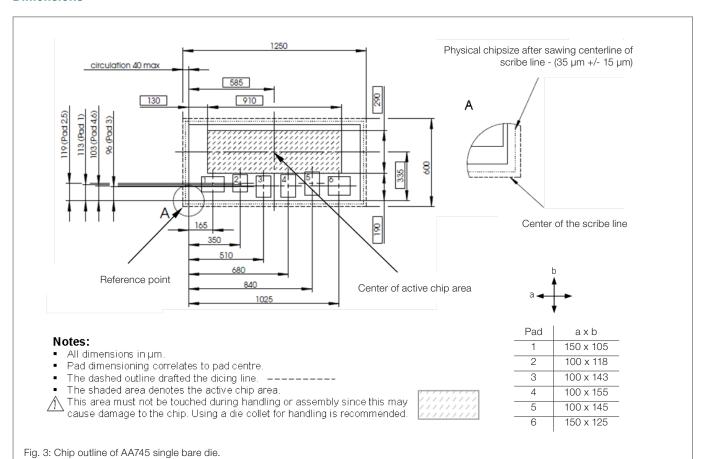



Fig. 1: *left*: Simplified circuit diagram with schematic of applied magnetic field. $\it right$: Output signals as a function of the magnetic field angle α .


AA745 as Single Bare Die

Pinning

Filling					
Pad	Symbol	Parameter			
1	-V ₀₂	Output voltage bridge 2			
2	-V _{O1}	Output voltage bridge 1			
3	GND	Ground			
4	+V _{O1}	Output voltage bridge 1			
5	+V _{O2}	Output voltage bridge 2			
6	V _{cc}	Supply voltage			

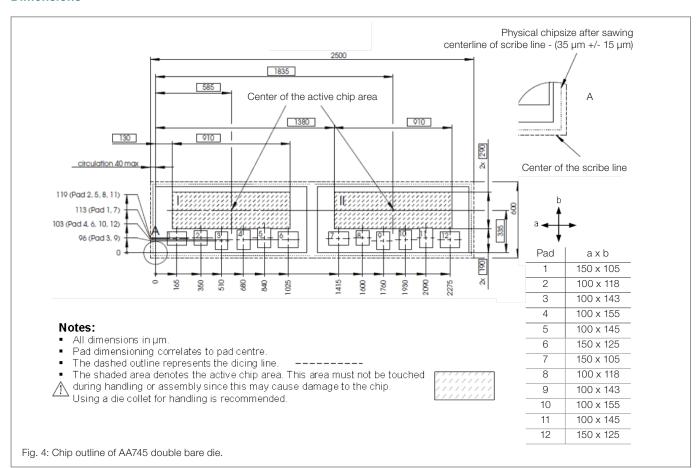
Dimensions

Data for Packaging and Interconnection Technologies

Parameter	Value	Unit
Chip area ¹⁾	1.25 x 0.6	mm
Chip thickness	380 ± 10	μm
Pad diameter (all)	See Fig. 3	μm
Pad thickness	0.8	μm
Pad material	AlCu	-

¹⁾ Tolerances of chip size see Fig. 3.

AA745 as Double Bare Die


Pinning

Pad	Symbol	Parameter			
1	-V ₀₂ (I)	Output voltage bridge 2			
2	-V _{O1} (I)	Output voltage bridge 1			
3	GND (I)	Ground			
4	+V ₀₁ (I)	Output voltage bridge 1			
5	+V ₀₂ (I)	Output voltage bridge 2			
6	V _{CC} (I)	Supply voltage			

Pinning

- ······· 9					
Pad	Symbol	Parameter			
7	-V ₀₂ (II)	Output voltage bridge 2			
8	-V ₀₁ (II)	Output voltage bridge 1			
9	GND (II)	Ground			
10	+V ₀₁ (II)	Output voltage bridge 1			
11	+V ₀₂ (II)	Output voltage bridge 2			
12	V _{CC} (II)	Supply voltage			

Dimensions

Data for Packaging and Interconnection Technologies

Parameter	Value	Unit
Chip area 1)	2.5 x 0.6	mm
Chip thickness	380 ± 10	μm
Pad diameter (all)	See Fig. 4	μm
Pad thickness	0.4	μm
Pad material	AlCu	-

¹⁾ Tolerances of chip size see Fig. 4.

MagnetoResistive Angle Sensor

General Information

Product Status

Article	Status
AA745Cxx-LB	The product is in series production.
Note	The status of the product may have changed since this data sheet was published. The latest information is available on the internet at www.sensitec.com.

Disclaimer

Sensitec GmbH reserves the right to make changes, without notice, in the products, including software, described or contained herein in order to improve design and/or performance. Information in this document is believed to be accurate and reliable. However, Sensitec GmbH does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information. Sensitec GmbH takes no responsibility for the content in this document if provided by an information source outside of Sensitec products.

In no event shall Sensitec GmbH be liable for any indirect, incidental, punitive, special or consequential damages (including but not limited to lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) irrespective the legal base the claims are based on, including but not limited to tort (including negligence), warranty, breach of contract, equity or any other legal theory.

Notwithstanding any damages that customer might incur for any reason whatsoever, Sensitec product aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the General Terms and Conditions of Sale of Sensitec GmbH. Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

Unless otherwise agreed upon in an individual agreement Sensitec products sold are subject to the General Terms and Conditions of Sales as published at www.sensitec.com.

The use and/or application of our products in a military end use is explicitly prohibited. In the event of infringements, we reserve the right to take legal action, including but not limited to the assertion of claims for damages and/or the immediate termination of the business relationship.

General Information

Application Information

Applications that are described herein for any of these products are for illustrative purposes only. Sensitec GmbH makes no representation or warranty – whether expressed or implied – that such applications will be suitable for the specified use without further testing or modification.

Customers are responsible for the design and operation of their applications and products using Sensitec products, and Sensitec GmbH accepts no liability for any assistance with applications or customer product design. It is customer's sole responsibility to determine whether the Sensitec product is suitable and fit for the customer's applications and products planned, as well as for the planned application and use of customer's third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products.

Sensitec GmbH does not accept any liability related to any default, damage, costs or problem which is based on any weakness or default in the customer's applications or products, or the application or use by customer's third party customer(s). Customer is responsible for doing all necessary testing for the customer's applications and products using Sensitec products in order to avoid a default of the applications and the products or of the application or use by customer's third party customer(s).

Sensitec does not accept any liability in this respect.

Life Critical Applications

These products are not qualified for use in life support appliances, aeronautical applications or devices or systems where malfunction of these products can reasonably be expected to result in personal injury.

Copyright © by Sensitec GmbH, Germany

All rights reserved. No part of this document may be copied or reproduced in any form or by any means without the prior written agreement of the copyright owner. The information in this document is subject to change without notice. Please observe that typical values cannot be guaranteed. Sensitec GmbH does not assume any liability for any consequence of its use.

Changelist

Version	Description of the Change	Date
AA745.Cxx-LB.DSE.04	Disclaimer supplement	06/2022
AA745.Cxx-LB.DSE.03	Change of corporate design (pp. 1-7)	01/2022
AA745.Cxx-LB.DSE.02	Change of corporate design (pp. 1-7)	11/2020
AA745.Cxx-LB.DSE.01	Various textual changes	09/2013
AA745.Cxx-LB.DSE.00	Original (pp. 1-7)	02/2013

Sensitec GmbH

Schanzenfledstr. 2 · 35578 Wetzlar · Germany Tel. +49 6441 5291-0 · Fax +49 6441 5291-117 www.sensitec.com · sensitec@sensitec.com